Human Anatomy and Physiology summary

Human Anatomy and Physiology summary

 

 

Human Anatomy and Physiology summary

Chapter 1
Introduction to Human Anatomy and Physiology
1.1  Introduction
1.  Describe how an early interest in the human body eventually led to the development of modern medical science. (p. 3)
Our earliest ancestors probably became curious about the body during illnesses and injuries. At these times, they visited shamans who relied on superstition and magic. Throughout early time, this curiosity led to discoveries of the healing powers of certain herbs and potions, especially to treat coughs, headaches, and other common problems. Not until about 2,500 years ago did these superstitious attitudes change and the body was looked at in the new light of modern science. Experiments, accurate observations, and tried techniques rapidly expanded knowledge of the human body. Greek and Latin words were used as a basis to describe body part locations and to explain their functions. This formed the basis for anatomy and physiology.

1.2 Anatomy and Physiology
2.  Distinguish between anatomy and physiology. (p.4)
Anatomy deals with the structure (morphology) of the body parts. This includes the shapes, forms, and placement of body organs and appendages. Physiology deals with the functions of body parts; what the body parts do; and how this is accomplished.

3.  Explain the relationship between the form and function of body parts and give three examples. (p.4)
The functional role will depend upon the manner in which the part is constructed. The human hand with its long, jointed fingers makes it possible for human beings to grasp things.

1.3 Levels of Organization
4.  Describe the relationship between each of the following pairs: molecules and cells, tissues and organs, organs and organ systems. (p. 4)
List the levels of organization within the human body and describe the characteristics of each.
Matter is composed of atoms.  Atoms join to form moleculesOrganelles are built of groups of large molecules.  The basic unit of structure and function in the human body is the microscopic cell, which contain organelles.  These cells organize into layers that have common functions. These layers are called tissues; these tissues then group together to form organs. Groups of organs make up organ systems. Groups of organ systems make up the organism, which in this case is the human.

1.4 Characteristics of Life
5. Which characteristics of life can you identify in yourself? (p. 6) 
List and describe ten characteristics of life. (Outcome 1.4)
Movement is the ability to self-initiate position changes of either the entire organism or a part of the organism, externally from place to place and/or internally, such as in peristalsis.
Responsiveness refers to the ability of an organism to detect changes either within itself or the environment surrounding it and then react to these changes.
Growth generally refers to an increase in body size without important changes to its general shape.
Reproduction is the process of making a new organism, as in parents producing offspring. It also discusses the process whereby cells can produce others like themselves to take the place of damaged or destroyed cells.
Respiration refers to the process of obtaining oxygen, using the obtained oxygen in release of energy from foods, and removing waste gases that are produced in the process.
Digestion is the chemical change of ingested foods into simpler substances that can be taken in and used by body parts.
Absorption is the passage of digested substances through membranes.
Circulation is the movement of substances through the body in body fluids.
Assimilation refers to the changing of substances into chemically different forms.
Excretion is the removal of body wastes.

6.  Identify those characteristics of living organisms that depend on metabolism. (p. 6)
Define metabolism and give examples.
Metabolism is the totality of chemical changes that occur within body parts. Conversion of food into energy, growth and repair of cells, and decomposition of lipids are examples.

1.5 Maintenance of Life
7.  Compare your own needs for survival with the requirements of organisms described in the chapter. (p. 7)
List and describe five requirements of organisms.
Water, the most abundant substance in the body, is required for many metabolic processes. It provides the environment for the metabolic processes to take place and then transports substances within the body. It is also important in the process of regulating body temperature.
Food is the substances that provide the body with the necessary chemicals to sustain life, in addition to water. These chemicals are used in a variety of ways by the body.
Oxygen, which makes up about one-fifth of air, is used in the process of releasing energy from food substances.
Heat, a form of energy, is a product of metabolic reactions. The rate at which these reactions occur is partly governed by the amount of heat present.
Pressure is a state in which a force is applied to something. Atmospheric pressure is an important role in breathing. Hydrostatic pressure, the pressure of fluid, plays an important role in the circulatory system.

8.  Explain the relationship between homeostasis and the internal environment. (p. 9)
Define homeostasis, and explain its importance. 
Homeostasis refers to the stable internal environment of an organism. In human beings, if the requirements listed above become unstable, the body will react in certain ways to regain its stable internal environment. An example would be sweating to help decrease body temperature.

9.  Describe a general physiological control system, including the role of negative feedback. (p. 9)
Homeostatic mechanisms detect changes away from the normal state. This stimulates responses in the opposite directions, which are called negative responses. This process is called negative feedback.

10.  Explain the control of body temperature. (p. 9)
Control of body temperature is maintained by a self-regulating control mechanism that can receive signals about changes away from the normal set points and cause reactions that return conditions to normal.

11.  Describe the homeostatic mechanisms that help regulate blood pressure and blood glucosewhat do they have in common and how are they different? (p. 10)
Homeostasis is maintained in each of these situations by a self-regulating control mechanism that can receive signals about changes away from the normal set points and cause reactions that return conditions to normal.

1.6 Organization of the Human Body.
12.  Explain the difference between the axial and appendicular portions of the body. (p. 12)
Axial portion—this consists of the head, neck, and trunk.
Appendicular portion—this consists of the arms and the legs.

13.  Identify the cavities within the axial portion of the body. (p. 12)
The dorsal cavity is located at the back of the organism. It can further be subdivided into two parts—the cranial cavity within the skull, which houses the brain; and the spinal cavity, which contains the spinal cord and is surrounded by sections of the backbone (vertebrae). The ventral cavity is the front part of the organism. It is subdivided into two parts—a thoracic cavity, which houses the lungs and heart; and an abdominopelvic cavity, which houses the stomach, liver, spleen, gallbladder, small and large intestines, urinary bladder, and the internal reproductive organs.

14.  Define viscera. (p. 12)
The viscera are the organs found deep within a body cavity.

15.  Describe the mediastinum and its contents. (p. 12)
The mediastinum is the region that separates the thoracic cavity into two compartments, which contain the right and left lungs.

16.  List the cavities of the head and the contents of each cavity. (p. 12)
Oral cavity is the mouth area and contains the teeth and the tongue.
Nasal cavity is located within the nose and is divided into right and left portions by a nasal septum. Air-filled sinuses are connected to the nasal cavity, including the sphenoidal and frontal sinuses.
Orbital cavities contain the eyes and associated skeletal muscles and nerves.
Middle ear cavities are found inside the ear and contain the middle ear bones.

17.  Name the body cavity that houses each of the following organs: (p. 12)
a. Stomach—abdominal
b. Heart—thoracic
c. Brain—cranial
d. Liver—abdominal
e. Trachea—thoracic
f.  Rectum—pelvic
g. Spinal cord—vertebral
h. Esophagus—thoracic
i.  Spleen—abdominal
j.  Urinary bladder—pelvic

18.  Distinguish between a parietal and a visceral membrane. (p. 12)
A parietal membrane refers to a membrane that is attached to the wall and forms the lining of a cavity whereas a visceral membrane refers to a membrane that is deeper toward the interior and covers the internal organs contained within a cavity.

19.  Describe the general contributions of each of the organ systems to maintaining homeostasis. (p. 14)
Integumentary system—it protects underlying tissues, helps regulate body temperature, houses a variety of sensory receptors, and synthesizes certain products.
Skeletal system—it provides frameworks and protective shields for softer tissues; serves as attachments for muscles when body parts move. It also has a role in blood cell production and storage of inorganic salts.
Muscular system—it provides the forces that cause body movements. They also maintain posture and are the main source of body heat.
Nervous system—it provides the ability to detect changes that occur inside and outside the body. It interprets the sensory impulses and what to do in response to these impulses. It also plays a role in muscle contraction and gland secretions.
Endocrine system—it secretes hormones that alter metabolism of a target tissue.
Cardiovascular system—it pumps blood throughout the body. The blood serves as a fluid for transporting gases, nutrients, hormones, and wastes.
Lymphatic system—it transports tissue fluid back to the bloodstream and carries certain fatty substances away from the digestive organs. It also plays a role in immunity.
Digestive system—it receives various food molecules from the outside and converts them into simpler ones that can be absorbed.
Respiratory system—it provides for the intake and output of air and for the exchange of gases between blood and air.
Urinary system—it removes various wastes from the blood and assists in maintaining the body’s water, electrolyte, and acid-base balances.
Reproductive system—it is responsible for the production of whole new organisms like itself.

20.  List the major organs that comprise each organ system and identify their functions. (p. 14)
Integumentary system—it consists of the skin and various accessory organs such as the hair, nails, sweat glands, and sebaceous glands.
Skeletal system—it consists of the bones, ligaments, and cartilages.
Muscular system—it consists of the muscles.
Nervous system—it consists of the brain, spinal cord, nerves, and sense organs.
Endocrine system—it consists of glands that secrete hormones.
Cardiovascular system—it consists of the heart, arteries, veins, capillaries, and blood.
Lymphatic system—it consists of the lymphatic vessels, lymph fluid, lymph nodes, thymus gland, and spleen.
Digestive system—it consists of the mouth, tongue, teeth, salivary glands, pharynx, esophagus, stomach, liver, gallbladder, pancreas, small intestine, and large intestine.
Respiratory system—it consists of the nasal cavity, pharynx, larynx, trachea, bronchi, and lungs.
Urinary system—it consists of the kidneys, ureters, urinary bladder, and urethra.
Reproductive system—the male reproductive system consists of the scrotum, testes, epididymides, vasa deferentia, seminal vesicles, prostate gland, bulbourethral glands, penis, and urethra. The female reproductive system consists of the ovaries, uterine tubes, uterus, vagina, clitoris, and vulva.

1.7 Life-Span Changes
21. Describe physical changes associated with aging that occur during each decade past the age of 30. (p.20)
Physical changes include gray hair, faint lines etched into facial skin, minor joint stiffness in the morning, and an increased probability of producing offspring with an abnormal number of chromosomes.
A person in his 40’s or 50’s may experience fading of hair color, wrinkled skin, hypertension, and elevated glucose levels.
The 60’s may bring grayer or whiter hair, more and deeper skin wrinkles, and waning immunity to certain diseases.

22. List age-associated changes that occur at the molecular, cellular, tissue and/or organ levels. (p. 20)
Changes include decreased collagen and elastin, diminished levels of subcutaneous fat, changes in proportion of water to fat in tissues, increased percentage of fat, tissue atrophy, and organ shrinkage.  At the cellular level, changes may include decreased number of cell divisions, abnormal cell division, inefficient transport of substances into and out of cells, and inefficient cell damage repair.  

1.8 Anatomical Terminology
23.  Write complete sentences using each of the following terms to correctly describe the relative locations of specific body parts: (p. 21)
a. superior—The head is superior to the abdomen.
b. inferior—The legs are inferior to the chest.
c. anterior—The eyes are anterior to the brain.
d. posterior—The brain is posterior to the eyes.
e. medial—The nose is medial to the eyes.
f. lateral—The ears are lateral to the eyes.
g. ipsilateral—The spleen and descending colon are ipsilateral.
h. contralateral—The spleen and gallbladder are contralateral.
i. proximal—The elbow is proximal to the wrist.
j. distal—The fingers are distal to the wrist.
k. superficial—The epidermis is the superficial layer of the skin.
l. peripheral—The nerves that branch from the brain and spinal cord are peripheral nerves.
m. deep—The dermis is the deep layer of the skin.

24.  Sketch the outline of a human body, and use lines to indicate each of the following sections: (p. 22)
a. Sagittal
b. Transverse
c. Coronal
See figure in textbook.

25.  Sketch the abdominal area, and indicate the location of each of the following regions: (p. 22)
a. Epigastric
b. Umbilical
c. Hypogastric
d. Hypchondriac
e. Lumbar
f. Iliac
See figure in textbook.

26.  Sketch the abdominal area, and indicate the location of each of the following regions: (p. 22)
a. right upper quadrant
b. right lower quadrant
c. left upper quadrant
d. left lower quadrant
See figure in textbook.

27.  Provide the common name for the region to which each of the following terms refers: (p. 23)
a. Acromial—point of shoulder
b. Antebrachial—the forearm
c. Axillary—the armpit
d. Buccal—the cheek
e. Celiac—the abdomen
f. Coxal—the hip
g. Crural—the leg
h. Femoral—the thigh
i. Genital—the reproductive organs
j. Gluteal—the buttocks
k. Inguinal—the depressed area of the abdominal wall near the thigh (groin).
l. Mental—the chin
m. Occipital—the lower back region of the head
n. Orbital—the eye cavity
o. Otic—the ear
p. Palmar—the palm of the hand
q. Pectoral—the chest
r. Pedal—the foot
s. Perineal—the region between the anus and external reproductive organs (perineum)
t. Plantar—the sole of the foot
u. Popliteal—the area behind the knee
v. Sacral—the posterior region between the hipbones
w. Sternal—the middle of the thorax, anteriorly
x. Tarsal—the instep of the foot
y. Umbilical—the navel
z. Vertebral—spinal column

Source: https://highered.mheducation.com/sites/dl/free/0073525707/631228/Chapter_01.doc

Web site to visit: https://highered.mheducation.com

Author of the text: not indicated on the source document of the above text

If you are the author of the text above and you not agree to share your knowledge for teaching, research, scholarship (for fair use as indicated in the United States copyrigh low) please send us an e-mail and we will remove your text quickly. Fair use is a limitation and exception to the exclusive right granted by copyright law to the author of a creative work. In United States copyright law, fair use is a doctrine that permits limited use of copyrighted material without acquiring permission from the rights holders. Examples of fair use include commentary, search engines, criticism, news reporting, research, teaching, library archiving and scholarship. It provides for the legal, unlicensed citation or incorporation of copyrighted material in another author's work under a four-factor balancing test. (source: http://en.wikipedia.org/wiki/Fair_use)

The information of medicine and health contained in the site are of a general nature and purpose which is purely informative and for this reason may not replace in any case, the council of a doctor or a qualified entity legally to the profession.

 

Human Anatomy and Physiology summary

 

Human Anatomy and Physiology summary

 

The following texts are the property of their respective authors and we thank them for giving us the opportunity to share for free to students, teachers and users of the Web their texts will used only for illustrative educational and scientific purposes only.

All the information in our site are given for nonprofit educational purposes

The information of medicine and health contained in the site are of a general nature and purpose which is purely informative and for this reason may not replace in any case, the council of a doctor or a qualified entity legally to the profession.

 

Human Anatomy and Physiology summary

 

www.riassuntini.com

 

Topics

Term of use, cookies e privacy

 

Contacts

Search in the site

Human Anatomy and Physiology summary