Chimica appunti parte 3

Chimica appunti parte 3

 

 

 

I riassunti , gli appunti i testi contenuti nel nostro sito sono messi a disposizione gratuitamente con finalità illustrative didattiche, scientifiche, a carattere sociale, civile e culturale a tutti i possibili interessati secondo il concetto del fair use e con l' obiettivo del rispetto della direttiva europea 2001/29/CE e dell' art. 70 della legge 633/1941 sul diritto d'autore

 

 

Le informazioni di medicina e salute contenute nel sito sono di natura generale ed a scopo puramente divulgativo e per questo motivo non possono sostituire in alcun caso il consiglio di un medico (ovvero un soggetto abilitato legalmente alla professione).

 

 

 

 

Chimica appunti parte 3

Stato liquido

 

Nello stato liquido le distanze tra le molecole risultano estremamente ridotte. Le particelle possono infatti considerarsi praticamente addossate le une alle altre, poiché la loro energia cinetica non è sufficiente a vincere le forze di attrazione intermolecolari. Le forze intermolecolari che agiscono sulle particelle di un liquido non sono comunque abbastanza elevate da trattenere le molecole ai vertici di un reticolo cristallino, come avviene nei solidi.

Le molecole di un liquido sono quindi in continuo movimento reciproco, come quelle di un aeriforme, ma, a differenza di quanto avviene in un gas, scorrono le une sulle altre senza separarsi.

Per questo motivo i liquidi risultano praticamente incomprimibili. Essi presentano in definitiva un volume proprio, ma si adattano alla forma del recipiente che li contiene.

 

Il moto caotico delle particelle determina, anche nello stato liquido, il fenomeno della diffusione. Un liquido diffonde comunque più lentamente di un gas, poiché il movimento delle sue molecole risulta ostacolato dalla presenza delle molecole adiacenti.

Avendo in comune la proprietà di diffondere, liquidi e aeriformi vengono raggruppati sotto la denominazione di fluidi.

 

Diffusione ed entropia

La diffusione è dunque un movimento spontaneo delle particelle di un fluido da una zona dove esse si trovano più concentrate verso una zona a minor concentrazione, in modo tale da raggiungere uno stato di equilibrio dinamico in cui le differenze di concentrazione sono state annullate e tutto lo spazio occupabile dal fluido è occupato in modo omogeneo ed uniforme.

 

 

Uno dei risultati più importanti raggiunti dalla meccanica statistica è senz'altro quello di aver giustificato il fenomeno della diffusione sulla base di semplici considerazioni probabilistiche legate al moto caotico delle particelle di un fluido.

La termodinamica classica introdusse (Clausius - 1865) il concetto di entropia (II principio della termodinamica) per descrivere i fenomeni che presentano  una certa direzionalità e tentare in tal modo di giustificare il verso assunto spontaneamente in natura da molte trasformazioni.

 

E' ad esempio noto che il calore  migra sempre da un corpo caldo ad un corpo freddo e mai viceversa. Del pari non è mai possibile assistere ad un fenomeno di separazione spontanea di una goccia di inchiostro dall'acqua in cui è stato versato e si è diffuso.

Se però si tenta di spiegare questi, ed analoghi fenomeni mediante la fisica classica ci si rende presto conto che è impossibile dedurre la direzione di un fenomeno dalle leggi che descrivono il moto.

Nessuna legge della meccanica classica vieta ad esempio a tutte le particelle d'acqua tiepida di una bacinella che possiedono minor energia cinetica di dirigersi verso un punto particolare fino a formare un cubetto di ghiaccio, mentre il resto dell'acqua, privata delle particelle più lente, diventi più calda.

 

Il concetto di entropia venne dunque introdotto per rendere ragione del verso che i fenomeni naturali assumono spontaneamente. Definita infatti l'entropia S come il rapporto tra il calore scambiato ΔQ e la temperatura T della sorgente. Il secondo principio della termodinamica (in una delle sue numerose accezioni) afferma infatti che un sistema evolve naturalmente verso stati di equilibrio caratterizzati da un maggior contenuto entropico. In altre parole sono spontanee le trasformazioni caratterizzate da aumenti del valore dell'entropia di un sistema.

 

Naturalmente il principio dell'aumento dell'entropia è un postulato. Esso non spiega perché i fenomeni naturali si orientano in una certa direzione. Si limita a calcolare un grandezza che permette di prevedere la direzione di un fenomeno spontaneo.

 

La meccanica statistica riformula il principio di aumento dell'entropia attraverso una interpretazione di tipo meccanicistico e probabilistico, generalizzandolo a qualsiasi trasformazione spontanea e non solo a quelle in cui sono presenti trasferimenti di calore.

 

Abbiamo già avuto modo di dire che la meccanica statistica è in grado di mettere in relazione le grandezze macroscopiche che caratterizzano un sistema con le medie statistiche delle grandezze che caratterizzano le singole particelle.

Il valore assunto dalla variabile macroscopica è detto macrostato, mentre i valori assunti dalle grandezze che descrivono le singole particelle sono detti microstati.

 

Ad esempio un certo valore di temperatura T (macrostato) è la conseguenza di un numero enorme di valori dell'energia cinetica assunti da tutte le particelle (microstati).

 

Naturalmente uno stesso macrostato (ad esempio un certo valore di temperatura) può essere ottenuto con diverse combinazioni di microstati ( ad esempio con il 100% delle particelle che possiedono un valore di energia cinetica pari alla media o con un 50% di particelle che possiedono energia cinetica massima e 50% che possiedono energia cinetica minima).

 

Ciò che la meccanica statistica dimostra è che maggiore è il numero di combinazioni diverse di microstati che possono produrre un medesimo macrostato e maggiore è la probabilità che un sistema si trovi in quel particolare macrostato.

 

Per esemplificare quanto detto prendiamo in considerazione gli 11 risultati che si possono ottenere dal lancio di due dadi. I valori vanno da 2 (1+1) a 12 (6+6).

Essi rappresentano 11 macrostati ottenibili però con diverse combinazioni di microstati. Infatti

 

      macrostato         combinazioni  possibili                         numero di microstati         probabilità

 

            2                      (1+1)                                                                          1                             1/36     

            3                      (1+2) (2+1)                                                                2                             2/36

            4                      (1+3) (2+2) (3+1)                                                      3                             3/36

            5                      (1+4) (2+3) (3+2) (4+1)                                            4                             4/36

            6                      (1+5) (2+4) (3+3) (4+2) (5+1)                                  5                             5/36

            7                      (1+6) (2+5) (3+4) (4+3) (5+2) (6+1)                        6                             6/36

            8                      (3+5) (2+6) (4+4) (6+2) (5+3)                                  5                             5/36

            9                      (4+5) (3+6) (6+3) (5+4)                                             4                             4/36

            10                    (4+6) (5+5) (6+4)                                                      3                             3/36

            11                    (5+6) (6+5)                                                                2                             2/36

            12                    (6+6)                                                                          1                             1/36

 

Come si può facilmente osservare (e come ben sanno tutti i giocatori) il 7 ha la maggior probabilità di uscire rispetto a tutti gli altri numeri. Il fenomeno si spiega facilmente se osserviamo come il 7 si possa ottenere in un maggior numero di modi diversi, attraverso cioè un maggior numero di combinazioni di microstati.

 

La meccanica statistica afferma dunque che un sistema evolve spontaneamente verso uno stato (macrostato) caratterizzato dal massimo numero possibile di diverse combinazioni di microstati poiché tale stato risulta più probabile.

 

Un macrostato caratterizzato da poche combinazioni di microstati è detto ordinato.

Un macrostato caratterizzato da molte combinazioni di microstati è detto disordinato.

 

Così, mescolando casualmente un mazzo di carte avremo pochissime probabilità di ottenere tutte le carte ordinatamente raccolte per seme, poiché tale macrostato ordinato può essere ottenuto mediante un'unica combinazione di microstati (l'asso di cuori in prima posizione, il due di cuori in seconda e così via), mentre saranno elevatissime le probabilità di trovare le carte in disordine, poiché tale macrostato, può essere ottenuto in molti modo diversi, con numerose combinazioni diverse di microstati.

 

In definitiva la termodinamica statistica dimostra che uno stato disordinato è più probabile di uno stato ordinato e che l'entropia non è altro che una misura di tale disordine. I processi in cui diminuisce l'entropia non sono dunque impossibili, ma solamente altamente improbabili.

 

Boltzmann ottenne infatti una relazione che permetteva di calcolare l'entropia (S) di un sistema sulla base del numero (n) di combinazioni di microstati attraverso il quale è possibile ottenere uno determinato macrostato

dove k è la costante di Boltzmann, pari a R/N (con R costante dei gas ed N numero di Avogadro).

 

In tal modo risulta ad esempio più comprensibile e meno arbitrario il terzo principio della termodinamica (principio di Nernst) che afferma che l'entropia di un solido cristallino a 0 K è nulla. Infatti un solido cristallino allo zero assoluto presenta teoricamente tutti i suoi atomi fermi ed ordinati ai vertici del reticolato solido. Tale configurazione perfettamente ordinata si può ottenere evidentemente in un sol modo ed il log 1 = 0.

 

Analogamente possiamo spiegare anche i fenomeni di diffusione. E' infatti evidente che uno stato in cui le molecole di un fluido si trovano concentrate in uno spazio limitato risulta più ordinato di uno stato in cui le molecole occupano, in modo casuale tutto lo spazio a disposizione. Lo stato disordinato può essere ottenuto in un numero di modi maggiore ed è per questo motivo di gran lunga più probabile.

 

Evaporazione e tensione di vapore

Anche le velocità (o le energie cinetiche) delle molecole che compongono un liquido possono essere descritte tramite una distribuzione di Maxwell.

Per ciascun liquido esiste un valore critico di Energia cinetica (Ec), che dipende essenzialmente dalla natura chimica della sostanza e dall'intensità delle forze intermolecolari, oltre il quale le molecole possiedono energia sufficiente per abbandonare la superficie del liquido e passare allo stato di vapore.

 

Tale processo interessa solo le molecole sufficientemente energetiche che si trovano sulla superficie del liquido ed è detto evaporazione.

Aumentando la temperatura del liquido la maxwelliana si sposta verso destra ed una frazione maggiore di molecole risulta possedere energia cinetica sufficiente per passare allo stato di vapore. All'aumentare della temperatura il processo di evaporazione si fa dunque più intenso.

 

Se poniamo un liquido all'interno di un recipiente chiuso dove abbiamo precedentemente fatto il vuoto, lo spazio non occupato dal liquido viene occupato dal suo vapore. Man mano che il processo di evaporazione procede il vapore che sovrasta la superficie del liquido si fa sempre più concentrato, essendo il recipiente chiuso, e la pressione misurabile all'interno aumenta progressivamente

All'aumentare della concentrazione del vapore si fanno sempre più frequenti gli urti tra le particelle gassose da una parte e tra le particelle e le pareti del recipiente dall'altra, in modo tale che un numero sempre maggiore di molecole, trasferendo quantità di moto durante gli urti, perde energia cinetica e ricade sulla superficie del liquido.

Il processo è noto come condensazione. La velocità di condensazione aumenta dunque con l’aumentare della concentrazione del vapore

vcond = k’ [vapore]

La velocità di evaporazione è invece costante e dipende essenzialmente dalla temperatura e dalle forze intermolecolari. Per evaporare le molecole devono superare una Energia di soglia E che permetta loro di vincere le forze intermolecolari

Vevap = k”

 

dove compare il fattore di Boltzmann

Finchè la velocità di evaporazione rimane più elevata di quella di condensazione, la concentrazione del vapore aumenta e, con essa, la pressione misurata. Si arriva tuttavia ad uno stato di equilibrio dinamico in cui la velocità del processo di evaporazione eguaglia la velocità del processo di condensazione. Poiché in tale situazione possiamo ritenere che il numero di particelle che evaporano sia pari al numero di particelle che condensano, il vapore non è in grado di arricchirsi ulteriormente e la pressione cessa dunque di aumentare. Il vapore viene per questo detto vapore saturo e la pressione esercitata è detta tensione di vapor saturo. All’equilibrio avremo dunque

vcond = Vevap

 

k’ [vapore] = k’”

 

Essendo la pressione direttamente proporzionale alla concentrazione del vapore possiamo anche scrivere

 

p = k

 

relazione sostanzialmente analoga all’equazione di Clausius-Clapeyron che mostra come la tensione di vapore saturo cresca esponenzialmente al crescere della temperatura.

 

 

Ebollizione

Come abbiamo già visto la tensione di vapore aumenta con la temperatura, poiché maggiore è il numero delle particelle che possiede un'energia cinetica superiore al valore critico.

 

La tensione di vapore varia da liquido a liquido. A parità di temperatura è maggiore per i liquidi caratterizzati da deboli forze intermolecolari, per ciò detti volatili; è minore per i liquidi caratterizzati da intense forze intermolecolari che tengono particolarmente coese le particelle.

 

Quando al crescere della temperatura la tensione di vapore eguaglia la pressione esterna (normalmente la pressione atmosferica), allora il processo di evaporazione interessa tutta la massa del liquido ed il passaggio di stato avviene in maniera tumultuosa, attraverso un processo detto di ebollizione. in cui si formano bolle di gas anche all'interno del liquido.

 

 

Si definisce punto di ebollizione normale la temperatura alla quale la tensione di vapore assume il valore di 760 mm di Hg (pressione normale). Per l'acqua, ad esempio, il punto di ebollizione normale è di 100°C (si noti come nel grafico seguente le curve della tensione di vapore crescano esponenzialmente al crescere della temperatura).

 

 

Naturalmente se la pressione esterna è inferiore a 760 mm, come avviene ad esempio in montagna, l'acqua raggiunge il punto di ebollizione a temperature inferiori; mentre se la pressione esterna è superiore, come in una pentola a pressione, l'acqua bolle a temperature superiori.

 

Se forniamo calore ad un liquido esso aumenta la sua temperatura fino al momento in cui non raggiunge il suo punto di ebollizione. Durante il passaggio di stato la temperatura del liquido resta invece invariata nonostante l'apporto di calore. Il calore fornito non viene utilizzato per aumentare l'energia cinetica delle particelle, ma si trasforma in un aumento di energia potenziale delle particelle gassose.

Tale calore, assorbito dal sistema senza produrre un aumento di temperatura, è noto come calore latente. Esso viene naturalmente restituito all'ambiente durante il processo di condensazione.

 

 

Tale comportamento è caratteristico di ogni passaggio di stato. Si noti che il passaggio dallo stato liquido a quello aeriforme è detto vaporizzazione e può avvenire per evaporazione, se la tensione di vapore è inferiore a quella atmosferica, o per ebollizione.

 

 

 

Diagramma di stato

 

Un diagramma di stato è una rappresentazione grafica delle condizioni di Temperatura e Pressione alle quali una sostanza si trova allo stato solido, liquido e aeriforme.

Un punto del piano cartesiano individua una particolare coppia di valori Pressione/Temperatura ai quali corrisponderà un particolare stato di aggregazione della sostanza.

E' possibile costruire un diagramma di stato per ogni sostanza, in modo che a ciascun stato di aggregazione sia assegnata una diversa zona del piano cartesiano.

 

Nell'esempio che segue è riportato il diagramma di stato dell'acqua.

 

 

 

Le linee che in un diagramma di stato separano due regioni sono dette confini di fase.

I punti che si trovano su tali linee corrispondono a condizioni termodinamiche (valori di Temperatura e Pressione) in cui si trovano in equilibrio dinamico due stati fisici.

 

Linea 1: evidenzia le condizioni di pressione e temperatura in corrispondenza delle quali il solido si trova in equilibrio con il liquido. La curva mostra dunque come varia la temperatura di fusione del ghiaccio al variare della pressione alla quale è sottoposto. Per la maggior parte delle sostanze tale curva presenta una pendenza positiva. Nell'acqua la pendenza negativa (all'aumentare della pressione la temperatura di fusione si abbassa) è dovuta al fatto che l'acqua, a differenza della maggior parte delle altre sostanze liquide, congelando aumenta di volume.

 

Linea 2: evidenzia le condizioni di pressione e temperatura in corrispondenza delle quali il liquido si trova in equilibrio con il proprio vapore. La curva può essere dunque considerata come un grafico della tensione di vapore del liquido.

 

Linea 3: evidenzia le condizioni di pressione e temperatura in corrispondenza delle quali il solido si trova in equilibrio con il proprio vapore. La curva può essere dunque considerata come un grafico della tensione di vapore  di sublimazione del solido.

 

Punto A: detto punto triplo, corrisponde alle condizioni in cui la fase solida, la fase liquida e quella aeriforme coesistono in un equilibrio dinamico. Per l'acqua corrisponde a 0,01°C e 4,6 mm di Hg. In tale punto la tensione di vapore del solido è uguale alla tensione di vapore del liquido. Poiché il punto triplo è il punto più basso della regione in cui una sostanza esiste allo stato liquido, esso segna la pressione al di sotto della quale uno sostanza non può esistere allo stato liquido, qualunque sia la sua temperatura.

 

 

 

Così se in una fredda e asciutta mattinata d'inverno la pressione parziale di vapore è inferiore a 4,6 mm di Hg e la temperatura scende sotto 0,01°C il vapore può trasformarsi direttamente in ghiaccio (brina) senza passare allo stato liquido.

 

Punti B e C: rappresentano rispettivamente il punto normale di fusione e di ebollizione dell'acqua essendo l'intersezione della curva 1 e 2 con l'ordinata di 1 atmosfera.

 

Punto D: rappresenta la temperatura critica della sostanza, oltre la quale non è possibile ottenere la fase liquida, qualunque sia la pressione alla quale la sostanza viene sottoposta.

 


 

Fonte: http://www.pianetachimica.it/didattica/documenti/Chimica_Generale.doc

Sito web da visitare: http://www.pianetachimica.it

Autore del testo: non indicato nel documento di origine

Il testo è di proprietà dei rispettivi autori che ringraziamo per l'opportunità che ci danno di far conoscere gratuitamente i loro testi per finalità illustrative e didattiche. Se siete gli autori del testo e siete interessati a richiedere la rimozione del testo o l'inserimento di altre informazioni inviateci un e-mail dopo le opportune verifiche soddisferemo la vostra richiesta nel più breve tempo possibile.

 

Chimica appunti parte 3

 

 

I riassunti , gli appunti i testi contenuti nel nostro sito sono messi a disposizione gratuitamente con finalità illustrative didattiche, scientifiche, a carattere sociale, civile e culturale a tutti i possibili interessati secondo il concetto del fair use e con l' obiettivo del rispetto della direttiva europea 2001/29/CE e dell' art. 70 della legge 633/1941 sul diritto d'autore

Le informazioni di medicina e salute contenute nel sito sono di natura generale ed a scopo puramente divulgativo e per questo motivo non possono sostituire in alcun caso il consiglio di un medico (ovvero un soggetto abilitato legalmente alla professione).

 

Chimica appunti parte 3

 

"Ciò che sappiamo è una goccia, ciò che ignoriamo un oceano!" Isaac Newton. Essendo impossibile tenere a mente l'enorme quantità di informazioni, l'importante è sapere dove ritrovare l'informazione quando questa serve. U. Eco

www.riassuntini.com dove ritrovare l'informazione quando questa serve

 

Argomenti

Termini d' uso, cookies e privacy

Contatti

Cerca nel sito

 

 

Chimica appunti parte 3